BHARATIYA VIDYA BHAVAN'S V M PUBLIC SCHOOL, VADODARA

QUESTION BANK

CHAPTER -10. VECTORS

ANSWER THE FOLLOWING QUESTIONS:

- 1. Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 15$.
- 2. Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} \hat{\jmath} + 4\hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c} = 1$
- 3. Find the angle between the vectors $\vec{a} = \hat{i} \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} \hat{k}$.
- 4. For what value of μ are the vectors $\vec{a}=2\hat{\imath}+\mu\hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2\hat{\jmath}+3\hat{k}$ perpendicular to each other?
- 5. Find the angle between two vectors \vec{a} and \vec{b} if $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a}| \times |\vec{b}| = 6$.
- 6. Find the direction cosines of a line, passing origin and lying in the first octant, making equal angles with the three coordinate axes.
- 7. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with the unit vector along the sum of vectors $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .
- 8. If \vec{a} is a unit vector perpendicular to \vec{b} and $(\vec{a} + 3\vec{b}) \bullet (2\vec{a} \vec{b}) = -10$, find $|\vec{b}|$.
- 9. Find the projection of \overrightarrow{AB} on \overrightarrow{CD} ,where A(4 3 , 2) ,B (1,– 1,– 1),C(2,2,2) and D (3,3,3).
- 10. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{j} \hat{k}$, find a vector \overrightarrow{c} such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 3$
- 11. If \vec{a} and \vec{b} are the position vectors of the points (1,-1) and (-2, m) respectively. Find the value of m for which \vec{a} and \vec{b} are collinear.
- 12. If a unit vector \vec{a} makes angle $\frac{\pi}{4}$ with \hat{i} , $\frac{\pi}{3}$ with \hat{j} and an acute angle θ with \hat{k} , then find the component of \vec{a} and the angle θ .
- 13. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{\imath} \hat{\jmath} + \hat{k}$ and $\vec{b} = 2\hat{\imath} 7\hat{\jmath} + \hat{k}$.
- 14. Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} \hat{\jmath} + 4\hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \bullet \vec{c} = 18$.
- 15. If $\vec{a} = 2\hat{\imath} 3\hat{\jmath} + \hat{k}$, $\vec{b} = -\hat{\imath} + \hat{k}$, $\vec{c} = 2\hat{\jmath} \hat{k}$ are three vectors, find the area of the parallelogram having diagonals $(\vec{a} + \vec{b})$ and $(\vec{b} + \vec{c})$.
- 16. If the three vectors a, b and c are coplanar prove that the vectors a+ b, b+ c, c+ a are also coplanar.
- 17. Find the projection of $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ on $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$.
- 18. Find the value of λ if $(2\hat{i} + 6\hat{j} + 14\hat{k}) \times (\hat{i} \lambda\hat{j} + 7\hat{k}) = \vec{0}$.
- 19. Find the direction cosines of the line passing through the points (-2, 4, -5) & (1, 2, 3).

- 20. Let $\vec{a} = 2\vec{i} + 2\vec{j} + \vec{k}$, $\vec{a} \cdot \vec{b} = 14$, $\vec{a} \times \vec{b} = 3\vec{i} + \vec{j} 8\vec{k}$. Find \vec{b} .
- 21. If the vectors a i + a j + c k, i + k and c i + c j + b k are coplanar, show that $c^2 = ab$.
- 22. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them , then find the value of θ such that $\vec{a}+\vec{b}$ is a unit vector.
- 23. The magnitude of the vector product of the vector $\hat{\imath} + \hat{\jmath} + \hat{k}$ with the unit vector along the sum of vectors $\hat{\imath} + 4\hat{\jmath} 5\hat{k}$ and $\lambda\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ is equal to $\sqrt{2}$. Find the value of λ .
- 24. Show that three vectors $\vec{a} = 2\vec{i} \vec{j} + \vec{k}$, $\vec{b} = \vec{i} 3\vec{j} 5\vec{k}$ and $\vec{c} = 3\vec{i} 4\vec{j} 4\vec{k}$ are coplanar.
- 25. Find the projection of vectors \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}$.
- 26. If $\vec{a} = 5\vec{i} \vec{j} 3\vec{k}$ and $\vec{b} = \vec{i} + 3\vec{j} 5\vec{k}$, then show that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal.
- 27. Find the vector and Cartesian equation of the plane passing through the points A(2,2,-1), B(3,4,2) and C(7,0,6).
- 28. Evaluate the value of $\hat{i} \bullet (\hat{j} \times \hat{k}) + \hat{j} \bullet (\hat{k} \times \hat{i}) + \hat{k} \bullet (\hat{i} \times \hat{j})$,
- 29. Prove that $\vec{a} \bullet (\vec{b} \times \vec{c}) \times (\vec{a} + \vec{b} + \vec{c}) = 0$.
- 30. Find the value of λ so that the lines $\frac{1-x}{3} = \frac{7y-14}{2\lambda} = \frac{z-3}{2}$ and $\frac{7-7x}{3\lambda} = \frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular to each other.
